The curve C:y=tanx⟶(i)
At x=π4,y=1 i.e (x4,1) is a point on C.
From (1), dydx=sec2x, At x=π4,dydx=sec2π4=2.
The equation of the tangent to the curve (1) at x=π4 is
y−1=[dydx]x=π/4(x−π4) or, y−1=2(x−π4) or, y=2x+1π2⟶(2)
If the tangent meet the x axis at O, then for O,y=0,
∴ 2x+1−π2=0, or x=π4−12 ∴ OO=π4−12.
Since OR=π4 ; ∴ OR=OR−OO=π4−(π4−12)=12,
Also PR=1
The required area is shaded in figure
Hence the required are.
= area of the region OPQ
= (area of the region OPR) − (area of ΔPQR)
=∫π/40ydx−12QR−PR
=∫π/40tanxdx−12,12,1=[logsecx]π/40−14
=(log√2−log1)−14=12log2−14=12(log2−12) Sq units.