Find the area of the region bounded by the curve y = x^3, y = x + 6 and x = 0.
We have, y = x^3, y = x + 6 and x = 0
∴x3=x+6
⇒ x3−x=6
⇒ x3−x−6=0
⇒ x2(x−2)+2x(x−2)+3(x−2)=0
⇒ (x−2)(x2+2x+3)=0
⇒ x=2, with two imaginary points
∴Required area of shaded region=∫20(x+6−x3)dx=[x22+6x−x44]20=[42+12−164−0]=[2+12−4]=10 sq units.