We have,
x2+y2=16......(1)
x2=6y......(2)
From equation (1) and (2) to,
y2+6y=16
y2+6y−16=0
y2+(8−2)y−16=0
y2+8y−2y−16=0
y(y+8)−2(y+8)=0
(y+8)(y−2)=0
If
y+8=0
y=−8
y−2=0
y=2
y=−8 as parabola lies in first or fourth quadrant.
We get,
When, y=2 put in equation (2) and we get,
x2=6y
x2=6×2
x2=12
x=2√3
By equation (1) and (2) intersect p(2,2√3)
=16π−2∫20ydx−∫42ydx
=16π−2∫20√6x12dx−2∫42√16−x2dx
=16π−2√6⎡⎢⎣23x32⎤⎥⎦02−2[x2√16−x2+162sin−1x4]
=16π−43√6(2)32−2[42√16−16+162sin−11−22√16−4−162sin−124]
=16π−16√3−16×π2+4√3+8π3
=−4√3+32π3
=43(8π−√3)
Hence, this is the answer.