We have,
y=cosxandy=sinx
Now,
sinx=cosx
sinxcosx=1
⇒tanx=1
⇒tanx=tanπ4
⇒x=π4
Then,
At x=π4, both are equal
So,
y=cosx=cosπ4
y=1√2
So, Finding area
$ \text{Requried}\,\text{area = Area of ABCO-Area of BCO} $
Requriedarea = ∫π40ydx−∫π40ydx
AreaABCO=∫π20cosxdx
=[sinx]0π4
=[sinπ4−sin0]
=1√2−0
=1√2
Area BCO =∫π40ydx
=∫π40sinxdx
=[−cosx]0π4
=−[cosπ4−cos0]
=−[1√2−1]
=1−1√2
Now,
Required area
=1√2−[1−1√2]
=1√2+1√2−1
=2√2−1
=√2−1
Hence, this is the
answer.