5
You visited us
5
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Area between Two Curves
Find the area...
Question
Find the area of the region common between the curve
x
2
+
y
2
=
4
and
x
2
+
4
y
2
=
9
.
Open in App
Solution
REF. Image.
As shaded region is symmetric
about origin, getting area in
first quadrant,
For
P
,
4
−
x
2
=
9
−
x
2
4
⇒
16
−
4
x
2
=
9
−
x
2
⇒
3
x
2
=
7
⇒
x
2
=
7
/
3
⇒
x
=
√
7
/
3
A
=
(
∫
√
7
/
3
0
√
9
−
x
2
2
+
∫
2
√
7
/
3
√
4
−
x
2
)
d
x
=
1
2
(
x
2
√
9
−
x
2
+
9
2
s
i
n
−
1
(
x
3
)
)
∫
√
7
/
3
0
+
x
2
√
4
−
x
2
+
4
2
s
i
n
−
1
(
x
2
)
∫
2
√
7
/
3
=
1
2
(
√
7
3
×
1
2
√
9
−
7
3
+
9
2
s
i
n
−
1
(
√
7
3
√
3
)
=
0
)
+
2
s
i
n
−
1
(
1
)
−
√
7
/
3
2
√
4
−
7
3
−
2
s
i
n
−
1
(
√
7
2
√
3
)
=
√
7
4
√
3
×
√
20
3
+
9
4
s
i
n
−
1
(
√
7
3
√
3
)
+
π
−
√
7
2
√
3
×
√
5
√
3
−
2
s
i
n
−
1
(
√
7
2
√
3
)
=
1
4
s
i
n
−
1
(
√
7
3
√
3
)
+
π
Suggest Corrections
0
Similar questions
Q.
Find the area of the region enclosed between the two curves x
2
+ y
2
= 9 and (x − 3)
2
+ y
2
= 9.