Because x2+y2=9;y2=8x
So x2+8x=9
x2+8x–9=0
⟹(x+9)(x−1)=0
⟹x=1,x=−9
Therefore y=±2√2
Point of intersections are p(1,2√2,1,−2√2)
y1=√8x=2√2x1/2
y2=√9−x2
Area = Area OPAQO = 2 Area OPAMO
Area = 2 (Area OPMO + Area APMA)
=2[∫10y1dx+∫31y2dx]
=2[∫102√2x1/2dx+∫31√32–x2dx]
=2[2√23/2(x3/2)10+(x2√32–x2+92 sin−1x3)31]
=2[4√22.1+92 sin−11−12×√8−92 sin−113]
=2[√23+9π4−92 sin−113] sq. Unit