wehavethegivenequation2x+y2=48andx=y.solvingforxfromthegivenequatinwegetx=−12y2+24x=yTofindthepointofintersectionwehavey=−12y2+242y=−y2+48y2+2y−48=0(y+8)(y−6)=0So,thepointsofintersectionarewhenx=−8,6.since,the2x+y2=48functionistherightboundedwehaveanareaof∫6−8(−12y2+24)−ydy=[−16y3+24y−12y2]6−8=−16(6)3+24(6)−12(6)2−(−12(−8)3+24(−8)−12(−8)2)=90−(−4163)=6863