Area enclose by y2=5x+6,
and x2=y
⇒x4−1=5x+5(x2+1)(x−1)(x+1)−5(x+1)=0x=−1
or, (x2+1)(x−1)−5=0x3−x2=x−1−5=0x3−x2+6=0x3−2x2+x2−2x+3x−6=0x3(x−2)+x(x−2)+3(x−2)=0(x−2)(x2+x+3)=0x−2
or x2+x+3=0
∫2−1(√5x+6−x2)dx
=∫2−1√5x+6dx−∫2−1x2dx
=⎡⎢ ⎢ ⎢ ⎢⎣15(5x+6)3232⎤⎥ ⎥ ⎥ ⎥⎦2−1−[x33]2−1
=211⎡⎢⎣(16)32−132⎤⎥⎦−[83+13]=211[43−1]−93=211×63−3=12615−3=42−155=275squnit