1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Quadratic Polynomial
Find the area...
Question
Find the area of the region in the first quadrant enclosed by
x
−
axis
, line
x
=
√
3
y
and the circle
x
2
+
y
2
=
4
.
Open in App
Solution
Given equation
x
=
√
3
y
x
2
+
y
2
=
4
∴
Radius
r
=
2
Centre
=
(
0
,
0
)
Draw diagram
⇒
(
√
3
y
)
2
+
y
2
=
4
⇒
3
y
2
+
y
2
=
4
⇒
4
y
2
=
4
⇒
y
2
=
1
∴
y
=
±
1
When
y
=
1
When
y
=
−
1
x
=
√
3
y
x
=
√
3
y
x
=
√
3
x
=
−
√
3
∴
C
is
√
3
,
1
x
2
+
y
2
=
4
⇒
y
2
=
4
−
x
2
⇒
y
=
±
√
4
−
x
2
∴
y
=
√
4
−
x
2
Area of
O
A
C
O
=
Area
O
C
X
O
+
Area
X
C
A
X
=
∫
√
3
0
y
d
x
+
∫
2
√
3
y
d
x
=
∫
√
3
0
x
√
3
d
x
+
∫
2
√
3
√
4
−
x
2
d
x
=
1
√
3
∫
√
3
0
x
d
x
+
∫
2
√
3
√
(
2
)
2
−
x
2
d
x
=
1
√
3
[
x
2
2
]
√
3
0
+
[
x
2
√
(
2
)
2
−
x
2
+
(
2
)
2
2
sin
−
1
x
a
]
2
√
3
=
3
2
√
3
+
2
sin
−
1
(
1
)
−
√
3
2
−
2
sin
−
1
√
3
2
=
√
3
2
−
√
3
2
+
2
[
π
2
−
π
3
]
=
2
[
π
6
]
=
π
3
Final answer:
Therefore, required area
=
π
3
square units
.
Suggest Corrections
26
Similar questions
Q.
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x
2
+ y
2
= 32.