Given curves are y2=4x ....(1)4x2+4y2=9 ...(2)
⇒x2+y2=94
Center of circle is (0,0) and radius of circle is 32
Put the value from eqn (1) in eqn (2),
4x2+16x−9=0
⇒x=12,−92
But x=−92, not possible .
So, x=12
⇒y=±√2
So, the points of intersection of both the curves are (12,√2) and (12,−√2).
The shaded region OABCO represents the area bounded by the curves {(x,y):y2≤4x,4x2+4y2≤9}
Since, the area OABCO is symmetrical about x-axis.
∴Area OABCO=2×Area OBC
Area OBCO=Area OMC+Area MBC
=∫1202√xdx+∫321212√9−4x2dx
=2[x3/23/2]1/20+∫3/21/2√(32)2−(x)2dx
=4312√2+⎡⎢
⎢⎣x√(32)2−(x)22+942sin−1⎛⎝x32⎞⎠⎤⎥
⎥⎦3/21/2
=√23+⎡⎣0+98sin−1(1)−12√22−98sin−1(13)⎤⎦
=√23+9π16−√24−98sin−1(13)
Required Area =2[√23+9π16−√24−98sin−1(13)]
=√26+9π8−94sin−1(13) sq.units