We have (x,y):y2≤6ax and x2+y2≤16a2
Consider y2=6ax---- (1) and x2+y2=16a2--- (2)
Curve (2) represents a circle centered at (0, 0) having radius of 4a.
Solving (1) and (2), x2+6ax−16a2=0⇒(x+8a)(x−2a)=0
Therefore, x=2a and x=−8a
So, x=2a,y=±2√3a and point of intersection are (2a,±2√3a).
Now required area = 2×ar(OAPMO)
=2[∫2a0y1dx+∫4a2ay2dx]
=2[√6a∫2a0√xdx+∫4a2a√(4a)2−x2dx]
=2(23√6a[x32]2a0+[x2√(4a)2−x2+16a22sin−1x4a]4a2a)
=43√6a[(2a)32−032]+[x√(4a)2−x2+16a2sin−1x4a]4a2a
=43√6a√2a(2a)+[(4a×0+16a2sin−1(1))−(2a×2√3a+16a2sin−112)]
=43√6a√2a(2a)+[16a2(π2−(4√3a2+16a2(π6))]
=16√33a2+[8πa2−4√3−8π3a2]
=4√33a2+16π3a2=4a23(4π+√3) Sq.units.