A triangle contains three line segments
AB,BC and
CA, so let's find the equations for these line segment.
Let us first find for A(4,1) and B(6,6)
Equation of line AB is given by
y−6x−6=1−64−6=
⟹y−6x−6=52
⟹2y−12=5x−30
⟹y=5x−182 ........ (i)
Let's find for B(6,6),C(8,4)
Equation of line BC is given by
y−6x−6=4−68−6=
⟹y−6x−6=−22=−11
⟹y−6=−x+6
⟹y=−x+12 ........ (ii)
Let's find for C(8,4),A(4,1)
Equation of line CA is given by
y−4x−8=1−44−8
⟹y−4x−8=34
⟹4y−16=3x−24
⟹y=3x−84 ........ (iii)
Area of triangle ABC is given by
A(△ABC)=∫645x−182 dx+∫86(−x+12) dx−∫843x−84 dx
=12∣∣∣5x22−18x∣∣∣64+∣∣∣−x22+12x∣∣∣86−14∣∣∣3x22−8x∣∣∣84
=12∣∣∣5(36−16)2−18(6−4)∣∣∣+∣∣∣−(64−36)2+12(8−6)∣∣∣−14∣∣∣3(64−16)2−8(8−4)∣∣∣84
=12(50−36)+(−14+24)−14(72−32)
=7+10−10=7
Hence, A(△ABC)=7 units