Let A(0,1),B(2,1),C(0,3) be the vertices of the triangle and D,E and F are mid-points of AB,BC and CD respectively.
Then, by midpoint formula
D≡(0+22,1+12),E≡(2+02,1+32), and F≡(0+02,1+32)
D≡(1,1,)E≡(1,2), and F≡(0,2)
Area of the△DEF =12|x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|
=12×|1×(2−2)+1×(2−1)+0×(1−2)|
=12×|0+1+0|
=12 square units.
Area of the △ABC=12|x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|
=12×|0×(1−3)+2×(3−1)+0×(1−1)|
=12×|0+4+0|
=2 square units.
Area of the△DEFArea of the△ABC=12×2=14.