wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the area of the triangle formed by the lines
(i) y = m1 x + c1, y = m2 x + c2 and x = 0
(ii) y = 0, x = 2 and x + 2y = 3.
(iii) x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0

Open in App
Solution

(i) y = m1x + c1 ... (1)

y = m2x + c2 ... (2)

x = 0 ... (3)

In triangle ABC, let equations (1), (2) and (3) represent the sides AB, BC and CA, respectively.

Solving (1) and (2):
x=c2-c1m1-m2, y=m1c2-m2c1m1-m2

Thus, AB and BC intersect at B c2-c1m1-m2,m1c2-m2c1m1-m2.

Solving (1) and (3):
x=0, y=c1

Thus, AB and CA intersect at A 0,c1.

Similarly, solving (2) and (3):
x=0, y=c2

Thus, BC and CA intersect at C 0,c2.

∴ Area of triangle ABC = 120c110c21c2-c1m1-m2m1c2-m2c1m1-m21

= 12c2-c1m1-m2c1-c2=12c1-c22m2-m1

(ii) y = 0 ... (1)

x = 2 ... (2)

x + 2y = 3 ... (3)

In triangle ABC, let equations (1), (2) and (3) represent the sides AB, BC and CA, respectively.

Solving (1) and (2):
x = 2, y = 0

Thus, AB and BC intersect at B (2, 0).

Solving (1) and (3):
x = 3, y = 0

Thus, AB and CA intersect at A (3, 0).

Similarly, solving (2) and (3):
x = 2, y = 12

Thus, BC and CA intersect at C 2, 12.

∴ Area of triangle ABC = 122013012121=14

(iii) x + y − 6 = 0 ... (1)

x − 3y − 2 = 0 ... (2)

5x − 3y + 2 = 0 ... (3)

In triangle ABC, let equations (1), (2) and (3) represent the sides AB, BC and CA, respectively.

Solving (1) and (2):
x = 5, y = 1

Thus, AB and BC intersect at B (5, 1).

Solving (1) and (3):
x = 2, y = 4

Thus, AB and CA intersect at A (2, 4).

Similarly, solving (2) and (3):
x = −1, y = −1

Thus, BC and CA intersect at C (−1, −1).

∴ Area of triangle ABC = 12511241-1-11=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Diameter and Asymptotes
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon