⇒a=3
⇒So, the coordinates of focus is S(0,a)=S(0,3)
⇒Let AB be the latus rectum of the given parabola.
⇒Coordinates of end-points of latus rectum are (−2a,a),(2a,a)
⇒Coordinates of A are (−6,3) while the coordinates of B are (6,3)
Therefore, the vertices of are △OAB are O(0,0),A(−6,3) and B(6,3)
⇒Let (x1,y1),(x2,y2),(x3,y3) be the coordinates of ΔOAB
⇒Area of △ OAB
=12|x1(y2−y3)+x2(y3−y2)+x3(y1−y2)|
=12|0(3−3)+(−6)(3−0)+6(0−3)|
=12|(−6)(3)+6(−3)|
=12|−18−18|
=12|−36|
=12×36
=18 sq.units
Thus the required area of the triangle is 18 unit2