wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the area of the triangle formed by the mid point of side of the triangle whose vertices are (2,1),(2,3),(4,3)

A
1.5 sq.units
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
3 sq.units
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
6 sq.units
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12 sq.units
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 1.5 sq.units

Let the vertices of the triangle be A(2,1),B(2,3) and C(4,3).

Let the mid-points of AB,BC and AC be P.Q and R. respectively.

Here,

P(x1,y1)

Q(x2,y2)

R(x3,y3)

Now,

P(x1,y1)=(222,1+32)=(0,2)

Q(x1,y1)=(2+42,332)=(1,0)

R(x3,y3)=(4+22,3+12)=(3,1)

Therefore, area of ΔPQR,

=12[x1(y2y3)+x2(y3y1)+x3(y1y2)]

=12[0(0+1)+1(12)+3(20)]

=12×3

=32


Hence, area of the required triangle is 1.5 sq. units.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon