y=m1x+am1........(i)y=m2x+am2........(ii)y=m3x+am3........(iii)
solving (i) and (ii) by y from (ii) in (i)
m1x+am1=m2x+am2(m2−m1)x=am1−am2(m2−m1)x=a(1m1−1m2)=am2−m1m1m2⇒x=am1m2y=m1×1m1m2+am1⇒y=a(1m2+1m1)
So the point of intersection is A(am1m2,a(1m1+1m2))
solving (ii) and (iii)
⇒B(am2m3,a(1m2+1m3))
solving (iii) and (i)
⇒C(am3m1,a(1m3+1m1))
So the vertices of triangle are A(am1m2,a(1m1+1m2)),B(am2m3,a(1m2+1m3)),C(am3m1,a(1m3+1m1))
Area of △=12∣∣ ∣ ∣ ∣ ∣ ∣ ∣∣am1m2a(1m1+1m2)1am2m3a(1m2+1m3)1am3m1a(1m3+1m1)1∣∣ ∣ ∣ ∣ ∣ ∣ ∣∣
Simplifying using properties of determinant
△=12a2∣∣ ∣ ∣ ∣ ∣ ∣∣1m1m21m1+1m211m2m31m2+1m311m3m11m3+1m11∣∣ ∣ ∣ ∣ ∣ ∣∣△=12a2∣∣ ∣ ∣ ∣ ∣ ∣∣1m1m2−1m2m31m1+1m2−1m2−1m311m2m3−1m3m11m2+1m3−1m3−1m111m3m11m3+1m11∣∣ ∣ ∣ ∣ ∣ ∣∣
△=12a2∣∣ ∣ ∣ ∣ ∣ ∣∣m3−m1m1m2m3m3−m1m3m10m1−m2m1m2m3m1−m2m2m101m3m11m3+1m11∣∣ ∣ ∣ ∣ ∣ ∣∣
Expanding along C3
△=12a2{0+0+1(m3−m1m1m2m3×m1−m2m2m1−m3−m1m3m1×m1−m2m1m2m3)}△=12a2(m3−m1)(m1−m2)(1m21m22m3−1m21m23m2)△=12a2(m3−m1)(m1−m2)(m3−m2m21m22m23)△=a2(m3−m1)(m1−m2)(m3−m2)÷2m21m22m23
Hence proved.