wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the area of the triangle PQR with Q (3, 2) and the mid-points of the sides through Q being (2, -1) and (1, 2).

Open in App
Solution

given
Q (3, 2) and the mid-points of the sides through Q being (2, -1) and (1, 2).

let P (x,y) and the mid pointt of the side PQ be (2,-1)

applying mid point theroram
2 equals fraction numerator x plus 3 over denominator 2 end fraction 4 equals x plus 3 x equals 1 f o r space y minus 1 equals fraction numerator y plus 2 over denominator 2 end fraction minus 2 equals y plus 2 y equals negative 4 s o space p equals left parenthesis 1 comma negative 4 right parenthesis s i m i l a r l y space left parenthesis 1 comma 2 right parenthesis space b e space t h e space m i d p o i n t space o f space Q R l e t R left parenthesis n comma m right parenthesis 1 equals fraction numerator n plus 3 over denominator 2 end fraction 2 equals n plus 3 n equals negative 1 f o r space m 2 equals fraction numerator m plus 2 over denominator 2 end fraction m equals 2 R equals left parenthesis negative 1 comma 2 right parenthesis

So, the vertices of the triangle are P(1,-4), Q(3,2) and R(-1,2).

Now, area of triangle PQR = 12|1(22)+3(2+4)1(42)|=12 sq. units


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Area from Coordinates
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon