Find the area of △ABC whose vertices are :
(i) A(1, 2), B (-2, 3) and C(-3, -4)
(ii) A (-5,7),B(-4, -5) and C(4,5)
(iii) A(3, 8), B(-4, 2) and C(5, -1)
(iv) A (10, -6),B (2,5) and C(-1, 3)
(i) A (1, 2), B (-2, 3) and C (-3, -4) are the vertices of ΔABC. Then
(x1=1,y1=2),(x2=−2,y2=3),(x3=−3,y3=−4)
Area of triangle ABC
=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]=12[1(3−(−4))+(−2)(−4−2)+(−3)(2−3)]=12[1(3+4)−2(−6)−3(−1)]=12[7+12+3]=12[22]=11 sq.units
(ii) A(-5, 7), B(-4, -5) and C(4, 5)
A (-5, 7), B (-4, -5) and C (4, 5) are the vertices of ΔABC. Then
(x1=−5,y1=7),(x2=−4,y2=−5),(x3=4,y3=5)
Area of triangle ABC
=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]=12[−5(−5−5)+(−4)(5−7)+4(7−(−5))]=12[−5(−10)−4(−2)+4(12)]=12[50+8+48]=12[106]=53 sq.units
(iii) A(3, 8), B(-4, 2) and C(5, -1)
A (3, 8), B (-4, 2) and C (5, -1) are the vertices of ΔABC. Then
(x1=3,y1=8),(x2=−4,y2=2),(x3=5,y3=−1)
Area of triangle ABC
=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]=12[3(2–(−1))+(−4)(−1–8)+5(8–2))]=12[3(2+1)–4(−9)+5(6)]=12[9+36+30]=12[75]=37.5 sq.units
(iv) A(10, -6), B(2, 5) and C(-1, 3)
A (10, -6), B (2, 5) and C (-1, -3) are the vertices of ΔABC. Then
(x1=10,y1=−6),(x2=2,y2=5),(x3=−1,y3=3)
Area of triangle ABC
=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]=12[10(5−3)+(2)(3−(−6))+(−1)(−6–5)]=12[10(2)+2(9)–1(11)]=12[20+18+11]=12[49]=24.5 sq.units