wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the area of ABC whose vertices are :

(i) A(1, 2), B (-2, 3) and C(-3, -4)

(ii) A (-5,7),B(-4, -5) and C(4,5)

(iii) A(3, 8), B(-4, 2) and C(5, -1)

(iv) A (10, -6),B (2,5) and C(-1, 3)

Open in App
Solution

(i) A (1, 2), B (-2, 3) and C (-3, -4) are the vertices of ΔABC. Then

(x1=1,y1=2),(x2=2,y2=3),(x3=3,y3=4)

Area of triangle ABC

=12[x1(y2y3)+x2(y3y1)+x3(y1y2)]=12[1(3(4))+(2)(42)+(3)(23)]=12[1(3+4)2(6)3(1)]=12[7+12+3]=12[22]=11 sq.units

(ii) A(-5, 7), B(-4, -5) and C(4, 5)

A (-5, 7), B (-4, -5) and C (4, 5) are the vertices of ΔABC. Then

(x1=5,y1=7),(x2=4,y2=5),(x3=4,y3=5)

Area of triangle ABC

=12[x1(y2y3)+x2(y3y1)+x3(y1y2)]=12[5(55)+(4)(57)+4(7(5))]=12[5(10)4(2)+4(12)]=12[50+8+48]=12[106]=53 sq.units

(iii) A(3, 8), B(-4, 2) and C(5, -1)

A (3, 8), B (-4, 2) and C (5, -1) are the vertices of ΔABC. Then

(x1=3,y1=8),(x2=4,y2=2),(x3=5,y3=1)

Area of triangle ABC

=12[x1(y2y3)+x2(y3y1)+x3(y1y2)]=12[3(2(1))+(4)(18)+5(82))]=12[3(2+1)4(9)+5(6)]=12[9+36+30]=12[75]=37.5 sq.units

(iv) A(10, -6), B(2, 5) and C(-1, 3)

A (10, -6), B (2, 5) and C (-1, -3) are the vertices of ΔABC. Then

(x1=10,y1=6),(x2=2,y2=5),(x3=1,y3=3)

Area of triangle ABC

=12[x1(y2y3)+x2(y3y1)+x3(y1y2)]=12[10(53)+(2)(3(6))+(1)(65)]=12[10(2)+2(9)1(11)]=12[20+18+11]=12[49]=24.5 sq.units


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Area from Coordinates
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon