Area of triangle having angular points
(x1,y1) (x2,y2) (x3,y3) is given by the formula
△=12|x1y2+x2y3+x3y1−x2y1−x3y2−x1y3|
or △=12|x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|
Points given are (a,b+c),(a,b−c) and (−a,c)
Then, Area=△=12|a(b−c−c)+a(c−b−c)+(−a)(b+c−(b−c))|
⇒Area=△=12|ab−2ac−ab−2ac|
⇒Area=△=12|−4ac|
⇒Area=△=2ac