wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Find the Arithmetic mean for each of the following frequency distribution by

Assumed mean method

Class interval

Frequency

110-120

120-130

130-140

140-150

150-160

160-170

170-180

180-190

190-200

200-210

210-220

2

5

11

21

26

34

36

28

16

7

4



Open in App
Solution

Step 1: Use the formula of mean using assumed mean method.

Arithmetic Mean, x=A+1Ni=1nfidi

Where,

n= Number of class intervals.

N=Sum of the frequencies.

xi=Mid value of the class intervals.

fi=Values of the frequency.

A=Assumed mean (Total Mid value of a grouped data of class intervals)

di=Deviation (Mid value of the class intervals -Assumed mean).

Step 2: Make the required frequency distribution table.

First, we have to prepare the table values to xi find the values for fidi

Class interval

xi

fi

di=xi-A=xi-165

fidi

110-120

120-130

130-140

140-150

150-160

160-170

170-180

180-190

190-200

200-210

210-220

115

125

135

145

155

165

175

185

195

205

215

2

5

11

21

26

34

36

28

16

7

4

-50

-40

-30

-20

-10

0

10

20

30

40

50

-100

-200

-330

-420

-260

0

360

560

480

280

200

i=111fi=190

i=111fidi=570

From the above table we get the values of,

i=111fi=N=190 ,

i=111fidi=570 ,

A=165.

Substitute the obtained values in the Arithmetic mean formula,

Then, Arithmetic mean, x=A+1Ni=1nfidi

=165+1190×570

=165+3

=168

Final answer:

Hence, the Arithmetic mean value of the given frequency distribution is 168.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
National and State Political Parties
CIVICS
Watch in App
Join BYJU'S Learning Program
CrossIcon