Equation of asymyptotes and and the curve only differ by constant. So the combined equation of asmyptotes is
2x2+5xy+2y2+4x+5y+c=0
It represents a pair of straight lines
∴abc+2fgh−af2−bg2−ch2=0⇒2(2)c+2(52)(2)(52)−2(52)2−2(2)2−c(52)2=0⇒4c+25−252−8−25c4=0⇒16c+100−50−32−25c=0⇒c=2
So, the equation of asymtotes is
2x2+5xy+2y2+4x+5y+2=02y2+(5x+5)y+2x2+4x+2=0y=−(5x+5)±√(5x+5)2−4(2)(2x2+4x+2)2(2)4y+5x+5=±√25x2+25+50x−16x2−32x−164y+5x+5=±√9x2+9−18x4y+5x+5=±√(3x−3)24y+5x+5=±(3x−3)⇒4y+5x+5=3x−3⇒2x+4y+8=0⇒4y+5x+5=−(3x−3)⇒8x+4y+2=0(2x+4y+8)(8x+4y+2)=0
Equation of hyperbola having the same asmyptotes is
(2x+4y+8)(8x+4y+2)=c