Tofindthecentreandradiusofcentre2x2+2y2=3x−5y+72x2+2y2−3x+5y=7x2+y2−32x+52y=72(devidedby2)x2−32x+y2+52y=72x2−32x+916+y2+52y+2516=72+916+2516(x−34)2+(y+54)2=72+916+2516=72+3416=9016⇒(x−34)2+(y+54)2=9016Comparingwithgeneralequationh=34,k=−54,r=√916(h,k)=(34,−54)r=√904Ans.