Squaring the given relation, we have
(z−α)(¯¯¯¯¯¯¯¯¯¯¯¯¯z−α)=k2(z−β)(¯¯¯¯¯¯¯¯¯¯¯¯z−β)
or (z−α)(¯¯¯z−¯¯¯¯α)=k2(z−β)(¯¯¯z−¯¯¯β)
or z¯¯¯z−¯¯¯¯αz−α¯¯¯z+α¯¯¯¯α=k2(z¯¯¯z−¯¯¯βz−β¯¯¯z+β¯¯¯β)
or z¯¯¯z(1−k2)−(¯¯¯¯α−k2¯¯¯β)z−(α−k2β)¯¯¯z+α¯¯¯¯α−k2β¯¯¯β=0
or z¯¯¯z−¯¯¯¯α−k2¯¯¯β1−k2z−(α−k2β)1−k2¯¯¯z+|α|2−k2|β|21−k2=0
or z¯¯¯z−¯¯¯az−a¯¯¯z+a¯¯¯a−a¯¯¯a+|α|2−k2|β|21−k2=0
or |z−a|2=|a|2−|α|2−k2∣∣β2∣∣1−k2=r2
Above represents a circle with center at a=α−k2β1−k2 and r2= as written above.