Find the centre of a circle passing through points (6, -6), (3, -7) and (3, 3).
(3,-2)
A = (6, -6), B = (3, -7), C = (3, 3)
If O is the centre, then OA = OB = OC (radii are equal)
Let O = (x, y)
∵ Distance between points (x1,y1) and(x2,y2) is √(x2−x1)2+(y2−y1)2.
⇒OA=√(x−6)2+(y+6)2
⇒OB=√(x−3)2+(y+7)2
⇒OC=√(x−3)2+(y−3)2
Now, OA =OB (∵ Distance from centre to any point on the circle is equal)
⇒(x−6)2+(y+6)2=(x−3)2+(y+7)2
⇒x2−12x+36+y2+12y+36=x2−6x+9+y2+14y+49
⇒x2−12x+y2+12y+72=x2−6x+y2+14y+58
⇒x2−12x−(x2−6x)=y2+14y−(y2+12y)+58−72
⇒−12x+6x=14y−12y−14
⇒−6x=2y−14.....(1)
Similarly OB = OC
⇒(x−3)2+(y+7)2 =(x−3)2+(y−3)2
⇒(y+7)2 =(y−3)2
⇒y2+14y+49=y2−6y+9
⇒20y=−40
⇒y=−2
Substituting the value of y in equation (1), we get;
−6x=2y−14
⇒−6x=−4−14=−18
⇒x=3
Hence, x = 3, y = - 2 are the coordinates of centre.