Let the circle be x2+y2+Dx+Ey+F=0 .....(1)
A(0,1) passes through equation(1)
⇒0+1+0+E+F=0
⇒E+F=−1 .....(1)
B(2,3) passes through equation(1)
⇒4+9+2D+3E+F=0
⇒2D+3E+F=−13 ....(3)
C(−2,5) passes through equation(1)
⇒4+25−2D+5E+F=0
⇒−2D+5E+F=−29 ....(4)
(3)⇒2D+3E+F=−13
⇒2D+2E+E+F=−13
⇒2D+2E−1=−13 from (2)
⇒2D+2E=−13+1=−12
⇒D+E=−6 ........(5)
(4)⇒−2D+4E+E+F=−29
⇒−2D+4E−1=−29 from (2)
⇒−2D+4E=−29+1=−28
⇒−D+2E=−14 .....(6)
Solving equations (5) and (6) we get
(5)+(6)⇒D+E−D+2E=−6+(−14)=−20
⇒3E=−20
∴E=−203
Substituting for E=−203 in eqn(5) we get
D=−6−E=−6−(−203)=−6+203=−18+203=23
Substituting the values of D=23 and E=−203 in
eqn(4) we get
(4)⇒−2D+5E+F=−29
⇒−2(23)+5(−203)+F=−29
⇒(−43)+(−1003)+F=−29
⇒F=−29−(−43)−(−1003)
⇒F=−29+43+1003=−29+1043=−87+1043=173
∴D=23,E=−203,F=173
∴ Equation of the circle is x2+y2+Dx+Ey+F=0 becomes x2+y2+23x+−203y+173=0
is of the form x2+y2+2gx+2fy+c=0
Centre is (−g,−f)
⇒2g=23⇒g=13
⇒2f=−203⇒f=−103
Hence centre is at (−13,103)