Given: x2+2y2−2x+12y+10=0
⇒(x2−2x+1)+2(y2+6y+9)−9=0
⇒(x−1)2+2(y+3)2=9
⇒(x−1)29+(y+3)292=1
Comparing with (x−h)2a2+(y−k)2b2=1
Where, centre =(h,k)=(1,−3)
a2=9⇒a=3
b2=92⇒b=3√2
Length of major axis =2a=6
Length of minor axis =2b=3√2
Eccentricity,
e=√1−b2a2
⇒e=
⎷1−929=1√2
Foci =(h±ae,k)=(1±3√2,−3)
Hence,
Centre =(1,−3)
Length of Major axis =6
Length of Minor axis=3√2
Eccentricity=1√2
Foci =(1±3√2,−3)