Given: x2+4y2−4x+24y+31=0
⇒(x2−4x+4)+4(y2+6y+9)−9=0
⇒(x−2)2+4(y+3)2=9
⇒(x−2)29+(y+3)294=1
Comparing with (x−h)2a2+(y−k)2b2=1
Where, centre =(h,k)=(2,−3)
a2=9⇒a=3
b2=94⇒b=32
Length of major axis =2a=6
Length of minor axis =2b=3
Eccentricity, e=√1−b2a2
⇒e=
⎷1−949=√32
Foci =(h±ae,k)=(2±3√32,−3)
Hence, Centre =(2,−3)
Length of Major axis =6
Length of Minor axis =3
Eccentricity =√32
Foci =(2±3√32,−3)