Given: 4x2+y2−8x+2y+1=0
⇒4(x2−2x+1)+(y2+2y+1)−4=0
⇒4(x−1)2+(y+1)2=4
⇒(x−1)21+(y+1)24=1
Comparing with (x−h)2a2+(y−k)2b2=1
Where, centre =(h,k)=(1,−1)
a2=1⇒a=1
b2=4⇒b=2
Length of minor axis =2a=2 (∵a<b)
Length of major axis =2b=4
Eccentricity, e=√1−a2b2
⇒e=√1−14=√32
Foci =(h,k±be)=(1,−1±√3)
Hence,
Centre =(1,−1)
Length of Major axis =4
Length of Minor axis =2
Eccentricity =√32
Foci =(1,−1±√3)