Given: 3x2+4y2−12x−8y+4=0
⇒3(x2−4x+4)+4(y2−2y+1)−12=0
⇒3(x−2)2+4(y−1)2=12
⇒(x−2)24+(y−1)23=1
Comparing with (x−h)2a2+(y−k)2b2=1
Where, centre =(h,k)=(2,1)
a2=4⇒a=2
b2=3⇒b=√3
Length of major axis =2a=4
Length of minor axis =2b=2√3
Eccentricity, e=√1−b2a2
⇒e=√1−34=12
Foci =(h±ae,k)=(2±1,1)
Hence,
Centre =(2,1)
Length of Major axis =4
Length of Minor axis =2√3
Eccentricity =12
Foci =(2±1,1)