Given: 4x2+16y2−24x−32y−12=0
⇒4(x2−6x+9)+16(y2−2y+1)−64=0
⇒4(x−3)2+16(y−1)2=64
⇒(x−3)216+(y−1)24=1
Comparing with (x−h)2a2+(y−k)2b2=1
Where, centre =(h,k)=(3,1)
a2=16⇒a=4
b2=4⇒b=2
Length of major axis =2a=8
Length of minor axis =2b=4
Eccentricity, e=√1−b2a2
⇒e=√1−416=√32
Foci =(h±ae,k)=(3±2√3,1)
Hence,
Centre =(3,1)
Length of Major axis =8
Length of Minor axis =4
Eccentricity =√32
Foci =(3±2√3,1)