Given: x2+4y2−2x=0
⇒x2−2x+1+4y2−1=0
⇒(x−1)2+4y2=1
⇒(x−1)21+y214=1
Comparing with (x−h)2a2+(y−k)2b2=1
Where, centre =(h,k)=(1,0)
a2=1⇒a=1
b2=14⇒b=12
Length of major axis =2a=2
Length of minor axis =2b=1
Eccentricity, e=√1−b2a2
⇒e=
⎷1−141=√32
Foci =(h±ae,k)=(1±√32,0)
Hence,
Centre =(1,0)
Length of Major axis =2
Length of Minor axis =1
Eccentricity =√32
Foci =(1±√32,0)