wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
(i) x2 + 2y2 − 2x + 12y + 10 = 0
(ii) x2 + 4y2 − 4x + 24y + 31 = 0
(iii) 4x2 + y2 − 8x + 2y + 1 = 0
(iv) 3x2 + 4y2 − 12x − 8y + 4 = 0
(v) 4x2 + 16y2 − 24x − 32y − 12 = 0
(vi) x2 + 4y2 − 2x = 0

Open in App
Solution

(i) x2+2y2-2x+12y+10=0x2-2x+2y2+6y=-10x2-2x+1+2y2+6y+9=-10+18+1x-12+2y+32=9x-129+y+3292=9Here, x1=1 and y1=-3Also, a=3 and b=32Centre= 1,-3Major axis=2a2×3=6Minor axis=2b2×32=32e=1-b2a2e=1-929e=12Foci= x1±ae,y1 =1±32,-3
(ii) x2+4y2-4x+24y+31=0x2-4x+4y2+6y=-31x2-4x+4+4y2+6y+9=-31+36+4x-22+4y+32=9x-229+y+3294=9Here, x1=2 and y1=-3 Also, a=3 and b=32Centre=x1,y1=2,-3Major axis=2a = 2×3 =6Minor axis=2b =2×32 =3e=1-b2a2e=1-949e=32Foci= x1±ae,y1 =2±332,-3
(iii) 4x2+y2-8x+2y+1=04x2-2x+y2+2y=-14x2-2x+1+y2+2y+1=-1+4+14x-12+y+12=4x-121+y+124=1Here, x1=1 and y1=-1 Also, a=1 and b=2Centre=x1,y1=1,-1Major axis=2b =2×2 =4Minor axis=2a =2×1 =2e=1-a2b2e=1-14e=32Foci =x1,y1±be =1,-1±3
(iv) 3x2+4y2-12x-8y+4=03x2-4x+4y2-2y=-43x2-4x+4+4y2-2y+1=-4+12+43x-22+4y-12=12x-224+y-123=1Here, x1=2, y1=1Also, a=2 and b=3Centre=x1, y1=2,1Major axis=2a =2×2 =4Minor axis=2b =2×3 =23e=1-b2a2e=1-34e=12Foci= x1±ae,y1 =2±1,1
(v) 4x2+16y2-24x-32y-12=04x2-6x+16y2-2y=124x2-6x+9+16y2-2y+1=12+36+164x-32+16y-12=64x-3216+y-124=9Centre= 3,1Major axis=2a =2×4 =8Minor axis=2b =2×2 =4e=1-b2a2e=1-416e=32Foci= x±ae,y =3±23,1(vi) x2-2x+4y2=0x2-2x+4y2=0x2-2x+1+4y2=1x-12+4y2=1x-121+y214=9Centre= 1,0Major axis=2a =2×1 =2Minor axis=2b =2×12 =1e=1-b2a2e=1-141e=32Foci =x±ae,y =1±32,0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Laws of Logarithms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon