3
You visited us
3
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Fundamental Laws of Logarithms
Find the cent...
Question
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
(i) x
2
+ 2y
2
− 2x + 12y + 10 = 0
(ii) x
2
+ 4y
2
− 4x + 24y + 31 = 0
(iii) 4x
2
+ y
2
− 8x + 2y + 1 = 0
(iv) 3x
2
+ 4y
2
− 12x − 8y + 4 = 0
(v) 4x
2
+ 16y
2
− 24x − 32y − 12 = 0
(vi) x
2
+ 4y
2
− 2x = 0
Open in App
Solution
(
i
)
x
2
+
2
y
2
-
2
x
+
12
y
+
10
=
0
⇒
x
2
-
2
x
+
2
y
2
+
6
y
=
-
10
⇒
x
2
-
2
x
+
1
+
2
y
2
+
6
y
+
9
=
-
10
+
18
+
1
⇒
x
-
1
2
+
2
y
+
3
2
=
9
⇒
x
-
1
2
9
+
y
+
3
2
9
2
=
9
Here
,
x
1
=
1
a
n
d
y
1
=
-
3
Also
,
a
=
3
a
n
d
b
=
3
2
Centre=
1
,
-
3
Major axis=2
a
⇒
2
×
3
=
6
Minor axis=2
b
⇒
2
×
3
2
=
3
2
e
=
1
-
b
2
a
2
⇒
e
=
1
-
9
2
9
⇒
e
=
1
2
Foci
=
x
1
±
a
e
,
y
1
=
1
±
3
2
,
-
3
(
ii
)
x
2
+
4
y
2
-
4
x
+
24
y
+
31
=
0
⇒
x
2
-
4
x
+
4
y
2
+
6
y
=
-
31
⇒
x
2
-
4
x
+
4
+
4
y
2
+
6
y
+
9
=
-
31
+
36
+
4
⇒
x
-
2
2
+
4
y
+
3
2
=
9
⇒
x
-
2
2
9
+
y
+
3
2
9
4
=
9
Here
,
x
1
=
2
and
y
1
=
-
3
A
l
s
o
,
a
=
3
a
n
d
b
=
3
2
Centre=
x
1
,
y
1
=
2
,
-
3
Major axis=2
a
=
2
×
3
=
6
Minor axis=2
b
=
2
×
3
2
=
3
e
=
1
-
b
2
a
2
⇒
e
=
1
-
9
4
9
⇒
e
=
3
2
Foci
=
x
1
±
a
e
,
y
1
=
2
±
3
3
2
,
-
3
(
iii
)
4
x
2
+
y
2
-
8
x
+
2
y
+
1
=
0
⇒
4
x
2
-
2
x
+
y
2
+
2
y
=
-
1
⇒
4
x
2
-
2
x
+
1
+
y
2
+
2
y
+
1
=
-
1
+
4
+
1
⇒
4
x
-
1
2
+
y
+
1
2
=
4
⇒
x
-
1
2
1
+
y
+
1
2
4
=
1
Here
,
x
1
=
1
a
n
d
y
1
=
-
1
A
l
s
o
,
a
=
1
a
n
d
b
=
2
Centre=
x
1
,
y
1
=
1
,
-
1
Major axis=2
b
=
2
×
2
=
4
Minor axis=2
a
=
2
×
1
=
2
e
=
1
-
a
2
b
2
⇒
e
=
1
-
1
4
⇒
e
=
3
2
Foci
=
x
1
,
y
1
±
b
e
=
1
,
-
1
±
3
(
iv
)
3
x
2
+
4
y
2
-
12
x
-
8
y
+
4
=
0
⇒
3
x
2
-
4
x
+
4
y
2
-
2
y
=
-
4
⇒
3
x
2
-
4
x
+
4
+
4
y
2
-
2
y
+
1
=
-
4
+
12
+
4
⇒
3
x
-
2
2
+
4
y
-
1
2
=
12
⇒
x
-
2
2
4
+
y
-
1
2
3
=
1
Here
,
x
1
=
2
,
y
1
=
1
A
l
s
o
,
a
=
2
a
n
d
b
=
3
Centre=
x
1
,
y
1
=
2
,
1
Major axis=2
a
=
2
×
2
=
4
Minor axis=2
b
=
2
×
3
=
2
3
e
=
1
-
b
2
a
2
⇒
e
=
1
-
3
4
⇒
e
=
1
2
Foci
=
x
1
±
a
e
,
y
1
=
2
±
1
,
1
(
v
)
4
x
2
+
16
y
2
-
24
x
-
32
y
-
12
=
0
⇒
4
x
2
-
6
x
+
16
y
2
-
2
y
=
12
⇒
4
x
2
-
6
x
+
9
+
16
y
2
-
2
y
+
1
=
12
+
36
+
16
⇒
4
x
-
3
2
+
16
y
-
1
2
=
64
⇒
x
-
3
2
16
+
y
-
1
2
4
=
9
Centre=
3
,
1
M
ajor axis=2
a
=
2
×
4
=
8
Minor axis=2
b
=
2
×
2
=
4
e
=
1
-
b
2
a
2
⇒
e
=
1
-
4
16
⇒
e
=
3
2
Foci
=
x
±
a
e
,
y
=
3
±
2
3
,
1
(
vi
)
x
2
-
2
x
+
4
y
2
=
0
⇒
x
2
-
2
x
+
4
y
2
=
0
⇒
x
2
-
2
x
+
1
+
4
y
2
=
1
⇒
x
-
1
2
+
4
y
2
=
1
⇒
x
-
1
2
1
+
y
2
1
4
=
9
Centre=
1
,
0
Major axis=2
a
=
2
×
1
=
2
Minor axis=2
b
=
2
×
1
2
=
1
e
=
1
-
b
2
a
2
⇒
e
=
1
-
1
4
1
⇒
e
=
3
2
Foci
=
x
±
a
e
,
y
=
1
±
3
2
,
0
Suggest Corrections
0
Similar questions
Q.
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
(i)
x
2
+
2
y
2
−
2
x
+
12
y
+
10
=
0
(ii)
x
2
+
4
y
2
−
4
x
+
24
y
+
31
=
0
(iii)
4
x
2
+
y
2
−
8
x
+
2
y
+
1
=
0
(iv)
3
x
2
+
4
y
2
−
12
x
−
8
y
+
4
=
0
(v)
4
x
2
+
16
y
2
−
24
x
−
32
y
−
12
=
0
(vi)
x
2
+
4
y
2
−
2
x
=
0
Q.
Find the centre and radius of each of the circle
(i)
x
2
+
y
2
−
2
x
+
4
y
−
4
=
0
(ii)
4
x
2
+
4
y
2
−
24
x
−
8
y
−
24
=
0
Q.
Find the eccentricity, foci, centre, length of latus rectum vertices and the equation to the directrices of the hyperbola.
(a)
9
x
2
−
16
y
2
+
72
x
−
32
y
−
16
=
0
(b)
4
x
2
−
5
y
2
−
16
x
+
10
y
+
31
=
0
(c)
5
x
2
−
4
y
2
+
20
x
+
8
y
−
4
=
0
(d)
4
(
y
+
3
)
2
−
9
(
x
−
2
)
2
=
1
(e)
4
x
2
−
9
y
2
−
8
x
−
32
=
0
.
Q.
Find the values of a, b, c for following quadratic equations by comparing with standard form.
(i) x
2
+ 2x + 1 = 0
(ii) 2x
2
– x + 3 = 0
(iii) x
2
– x – 3 = 0
(iv) x
2
+ 5x – 4 = 0
(v) x
2
– 7x + 4 = 0
(vi) 4x
2
– 9x + 1 = 0
Q.
Find the eccentricity, coordinates of foci, length of the latus-rectum of the following ellipse:
(i) 4x
2
+ 9y
2
= 1
(ii) 5x
2
+ 4y
2
= 1
(iii) 4x
2
+ 3y
2
= 1
(iv) 25x
2
+ 16y
2
= 1600.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Fundamental Laws of Logarithms
MATHEMATICS
Watch in App
Explore more
Fundamental Laws of Logarithms
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app