Let the vertices of the triangle be A(3,0),B(−1,−6) and C(4,−1).
P(x,y) be the required circumcentre and r is the circumradius of the △ABC,
Then, we must have,
r2=PA2=(x−3)2+(y−0)2 --------(1)
r2=PB2=(x+1)2+(y+6)2 --------(2)
r2=PC2=(x−4)2+(y+1)2 --------(3)
From (1) and (2), we get,
(x−3)2+y2=(x+1)2+(y+6)2
⇒x2+9−6x+y2=x2+1+2x+y2+36+12y
⇒9−6x=37+2x+12y
⇒8x+12y+28=0
⇒2x+3y+7=0
∴x=−3y−72 ----------(4)
From, (2) and (3), we get
(x+1)2+(y+6)2=(x−4)2+(y+1)2
⇒x2+1+2x+y2+36+12y=x2+16−8x+y2+1+2y
⇒2x+12y+37=2y−8x+17
⇒10x+10y+20=0
⇒x+y+2=0
⇒−3y−72+y+2=0
⇒−3y−7+2y+4=0
⇒y=−3
Now, x+y+2=0
⇒x−3+2=0
⇒x=1
∴ Required circumcentre=(1,3)
Circumradius=r=√(x−3)2+y2
⇒r=√4+9
⇒r=√13