Consider the following question.
Circumcentre of triangle is
equidistant from vertices , so
A(1,3),B(0,−2),C(−3,1) are equidistant from O
Let the coordinate of O be (x,y) .
AO=BO
(x−1)2+ (y−3)2=(x−0)2+(y+2)2
x2+1−2x+y2+9−2y=x2+y2+4−4y
10−2x−2y=4−4y
2x−2y=6
x−y=3. ......eq(i)
CO=A O
(x−1)2+(y−3)2=(x+3)2+(y−1)2
x2+1−2x+y2+9−6y=x2+9+6x+y2+1−2y
−6y−2x=6x−2y
8x+4y=0
2x+y=0. ...eq(ii)
By elimination method, we get.
3x=3
x=1
Put the value of x eq. (i), we get.
1−y=3
y=−2
Coordinate of circumcentre =(1,−2)
Hence, this is the required answer.