The correct option is
B (−710,−910)Given three points A(2,3) , B(1,-5) and C(-1,4)
Mid point of AB=(2+12,3−52)=(32,−1)
Slope of AB=y2−y1x2−x1=−5−31−2=−8−1=8
∴ Slope of perpendicular bisector =−18
∴ Equation of AB with respect to slope =−18 and coordinate (32,−1)
y−y1=m(x−x1)⇒y+1=−18(x−32)y+1=−116(2x−3)⟹16y+16=−2x+32x+16y+13=0⟶(1)
Slope of =(2−12,3+42)=(12,72)
Slope of =y2−y1x2−x1=4−3−1−2=−13
∴ Slope of perpendicular bisector =3
∴ Equation of AC with respect to slope and 3 coordinate (12,72)
⇒y−y1=m(x−x1)y−72=3(x−12)2y−7=6x−3⇒6x−2y+4=0∴3x−y+2=0⟶(2)2x+16y=−13⟶×33x−y=−2⟶×26x+48y=−39−6x±2y=±−450y=−35∴y=−3550=−710∴x=−910
∴ The circumcenter of triangle =(−910,−710)