The correct option is
A (1,√3)Given the three vertices of a triangle
A(3,√3),B(0,0) and C(0,2√3)
Mid point of AB=(3+02,√3+02)=(32,√32)
∴ Slope of AB=y2−y1x2−x1=0−√30−3=√33=1√3
∴ Slope of the perpendicular bisector =−√3
∴ Equation of AB with slope −√3 and coordinates (32,√32)
y−y1=m(x−x1)⇒y−√32=−√3(x−32)2y−√32=−√3(2x−3)2⇒2y−√3=−2√3x+3√32√3x+2y−4√3=0→(1)
Similarly for AC, A(3,√3) and A(3,√3)
Mid point of AC=(3+02,√3+2√32)=(32,3√32)
∴ Slope of AC=y2−y1x2−x1=2√3−√30−3=−√33=−1√3
∴ Slope of perpendicular bisector =√3
Equation of AC with slope √3 and the coordinates (32,3√32)
y−y1=m(x−x1)⇒y−3√32=√3(x−32)2y−3√3=2√3x−3√3⇒2√3x−2y=0→(2)2√3x+2y=4√32√3x±2y=04y=4√3⇒y=√3
∴x=1
∴ Circumcenter of triangle=(1,√3)