Find the circumradius of the triangle whose vertices are (8, 6), (8, – 2) and (2, – 2).
5
Recall that the circumcentre of a traingle is equidistatnt from the verices of a traingle . Let A (8 , 6 ), B ( 8, -2 ) and C (2 , -2) be the vertices of the given traingle and let P ( x, y) be the circumcentre of this traingle . Then ,
PA = PB = PC ⇒ PA2 = PB2 = PC2
Now , PA2 = PB2
⇒ (x−8)2 + (y−6)2 = (x−8)2 + (y+2)2
⇒ x2 + y2 - 16x - 12 y +100 = x2 + y2 - 16x + 4y + 68
⇒ 16y = 32
y = 2
and
PB2 = PC2
⇒ (x−8)2 + (y+2)2 = (x−2)2 + (y+2)2
⇒ x2 + y2 - 16x + 4y + 68 = x2 + y2 -4 x + 4y +8
⇒ 12x = 60
⇒ x = 5
So the coordinates of the circumcentre P are (5 ,2)
Also, Circum- radius = PA = PB = PC
= √((5−8)2+(2−6)2)
= √9+16
= 5