We have,
Equation of line y=x−1 …… (1)
Equation of circle x2+y2−2x−2=0 …… (2)
Substitute the value of y by equation (1) in equation (2) and we get,
x2+y2−2x−2=0
x2+(x−1)2−2x−2=0
x2+x2+1−2x−2=0
2x2−2x−1=0
Comparing that ax2+bx+c=0 and we get,
a=2,b=−2,c=−1
Then we know that,
x=−b±√b2−4ac2a
=−(−2)±√(−2)2−4×2×(−1)2×2
=2±√124
=2±2√34
=1±√32
Then, x1=1+√32 and x2=1−√32
Put the value of x in equation (1) and we get,
y=1±√32−1
y=1±√3−22
y=−1±√32
Then, y1=−1+√32 and y2=−1−√32
Let the middle point of chord.
(x′,y′)=(x1+x22,y1+y22)
(x′,y′)=⎛⎜ ⎜ ⎜ ⎜⎝1+√32+1−√322,−1+√32+−1−√322⎞⎟ ⎟ ⎟ ⎟⎠
(x′,y′)=⎛⎜ ⎜ ⎜ ⎜⎝1+√3+1−√322,−1+√3−1−√322⎞⎟ ⎟ ⎟ ⎟⎠
(x′,y′)=⎛⎜ ⎜ ⎜⎝222,−222⎞⎟ ⎟ ⎟⎠
(x′,y′)=(12,−12)
Hence, this is the answer.