Let P and Q be the points of trisection so that AP=PQ=QB.
For P:
m1:m2=AP:PB=1:2;(x1,y1)=(6,−2) and (x2,y2)=(−8,10)
∴x=m1x2+m2x1m1+m2=1×−8+2×61+2=43
∴y=m1y2+m2y1m1+m2=1×10+2×−21+2=2
∴ Point P=(43,2)
For Q :
m1:m2=AQ:QB=2:1;(x1,y1)=(6,−2) and (x2,y2)=(−8,10)∴Q=(2×−8+1×62+1,2×10+1×−22+1)=(−103,6)