x2+2y2=9
∴2x+4ydydx=0
∴x+2ydydx=0
∴dydx=−x2y
Now slope of tangent =14
∴−x2y=14
∴x=−y2 (1)
Put x=−y2 in equation x2+2y2=9
∴y24+2y2=9
∴y2+8y2=36
∴9y2=36
∴y2=4
∴y=±2
Substitute this value in result (1)
∴x=±22
∴x=±1
∴ Required points means co-ordinates of the point of contact (1,2) and (−1,2)
Now slope of tangent dydx=x2y
∴(dydx)P(1,2)=14
∴ Slope of Normal =−4
∴ We get equation of Normal using equation
y=y1=m(x−x1)
∴y+2=−4(x−1)
∴y+2=−4x+4
∴4x+y=2 .(1)
∴ Now equation of normal at point
(−1,2)y−2=−4(x+1)
∴y−2=−4x−4
∴4x+y=−2 .(2)
∴ Result (1) and (2) shows equation of Normal.