Find the coefficient of (a5+b4+c7) in the expansion of (bc+ca+ab)8
(bc+ca+ab)8=∑r1+r2+r38!r1!r2!r3!×(bc)r1(ca)r2(ab)r3
We want the coefficient of a5b4c7
Let 8!r1!r2!r3!=k
⇒(bc+ca+ab)8=∑k×ar2+r3br1+r3cr1+r2
r2+r3=5(powerofa=5)−(1)
r1+r3=4−(2)
r1+r2=7−(3)
(3)−(2)⇒r2−r3=3−(4)
(1)+(4)⇒2r2=8
r2=4
⇒r1=3 and r3=1
So the coefficient k=8!4!×3!×1!
=8×7×6×53×2
= 280