Find the coefficient of a4 in the product (1+2a)4(2−a)5 using binomial theorem.
We have,
(1+2a)4(2−a)5
Now,
(1+2a)4=4C0+4C12a+4C2(2a)2+4C3(2a)3+4C4(2a)4
and, (2−5)5=5C0×25+5C2×24(−a)+5C2×23(−a)3+5C3×22(−a)3+5C4×2(−a)4+5C5(−a)5
=5C0×25−5C1×24×a+5C2×23a2−5C3×22×a3+5C4×2×a4−5C5×a5
∴(1+2a)4(2−a)5=[4C0+4C12a+4C2(2a)2+4C3(2a)3+4C4(2a)4][5C0×25−5C1×24×a+5C2×23×a2−5C3×22×a3+5C4×2×a4−5C5×a5]
∴ Coefficients of a4=25C4−4C1×2×5C3×22+4C2(2)2×5C2×23−4C3(2)3×5C1×24+5C0×25
=2×5−8×4×10+32×6×10−128×4×512×1×1
=10-320+1920-2560+512
=2442-2880
=-438
∴ Coefficients of a4=−438.