General term of expansion is 12(12−1)⋯(12−p+1)b!c!d!(−2)b3c(−4)dxb+2c+3d, where p=b+c+d
We want to find the coefficient of x3, therefore b+2c+3d=3. This is possible for,
p=1,b=0,c=0,d=1;p=2,b=1,c=1,d=0;p=3,b=3,c=0,d=0
∴ the coefficient of x3=12(−4)+12(−12)(−2)3+12(−12)(−32)3!(−2)3
=−2+32−12=−1