Find the coefficient of x4 in the expansion of (1+x)n(1−x)n. Deduce that C2=C0C4−C1C3+C2C2−C3C1+C4C0, where, C stands for nCr.
(1+x)n×(1−x)n=[C0+C1x+C2x2+...+Cnxn]×[C0−C1x+C2x2−....+(−1)nCnxn]
(1+x)n×(1−x)n=(1−x2)n=[C0−C1x2+C2x4−...+(−1)nCnx2n].
∴C0C4−C1C3+C2C2−C3C1+C4C0=C2