wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the coefficient of x4 in the expression of (1x)12.(1+2x)6.

Open in App
Solution

(1x)12(1+2x)6
x4x x3 ...(1)
x2 x2 ...(2)
x3 x ...(3)
x4 x0 ...(4)
x0 x4 ...(5)
(1) [12C1(1)11(x)1]×[6C3(1)63(2x)3]=(12x)(20×8x3)=12x×160x3=1920x4
(2) [12C2(1)122(x)2][6C2(1)62(2x)2]=(66x2)(15×4x2)=3960x4
(3) [12C3(1)123(x)3][6C1(1)61(2x)1]=(220x3)(12x)=2640x4
(4) [12C4(1)124(x)4][6C0(1)60(2x)0]=(495x4)(1)=495x2
(5) [12C0(1)120(x)0][6C4(1)64(2x)4]=1×(15×16x4)=240x4
Coefficient of x4 in the expression = Sum of coefficient of x4 in (1), (2), (3), (4) and (5)
= -1920 + 3960 - 2640 + 495 + 240
= 2040 - 2145 + 240
= -105 + 240
= 135

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Polynomials in One Variable
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon