(1−x)12↓(1+2x)6↓
x4→x x3 ...(1)
x2 x2 ...(2)
x3 x ...(3)
x4 x0 ...(4)
x0 x4 ...(5)
(1) [12C1(1)11(−x)1]×[6C3(1)6−3(2x)3]=(−12x)(20×8x3)=−12x×160x3=−1920x4
(2) [12C2(1)12−2(−x)2][6C2(1)6−2(2x)2]=(66x2)(15×4x2)=3960x4
(3) [12C3(1)12−3(−x)3][6C1(1)6−1(2x)1]=(−220x3)(12x)=−2640x4
(4) [12C4(1)12−4(−x)4][6C0(1)6−0(2x)0]=(495x4)(1)=495x2
(5) [12C0(1)12−0(−x)0][6C4(1)6−4(2x)4]=1×(15×16x4)=240x4
Coefficient of x4 in the expression = Sum of coefficient of x4 in (1), (2), (3), (4) and (5)
= -1920 + 3960 - 2640 + 495 + 240
= 2040 - 2145 + 240
= -105 + 240
= 135