(1+2x)6=6C0+6C12x+6C2(2x)2+6C3(2x)3+6C4(2x)4+6C5(2x)5+6C6(2x)6
=1+6×2x+15×(2x)2+20×(2x)3+15×(2x)4+6×(2x)5+(2x)6
=1+12x+60x2+160x3+240x4+192x5+64x6
(1−x)7=7C0−7C1x+7C2x2−7C3x3+7C4x4−7C5x5+7C6x6−7C7x7
=1−7x+21x2−35x3+35x4−21x5+7x6−x7
∴(1+2x)6(1−x)7=(1+12x+60x2+160x3+240x4+192x5+64x6)(1−7x+21x2−35x3+35x4−21x5+7x6−x7)
The complete multiplication of the two bracets is not required to be carried out.Only those terms, which involve x5 are required.
The terms containing x5 are
=1(−21x5)+(12x)(35x4)+(60x2)(−35x3)+(160x3)(21x2)+(240x4)(−7x)+(192x5)(1)
=171x5 on simplification
Thus, the coefficient of x5 in the given product is 171