Find the coefficient of x50 in (1+x)+2(1+x)2+3(1+x)3+....+1000(1+x)1000.
Open in App
Solution
Given P(x)=(1+x)+2(1+x)2+3(1+x)3+....+999(1+x)999+1000(1+x)1000
Let S=(1+x)+2(1+x)2+3(1+x)3+....+999(1+x)999+1000(1+x)1000 ....(1)
(1+x)S=(1+x)2+2(1+x)3+3(1+x)4+....+999(1+x)1000+1000(1+x)1001 ....(2) Subtracting (1) from (2), we get ⇒xS=1000(1+x)1001−[(1+x)+(1+x)2+(1+x)3+....+(1+x)999+(1+x)1000] Terms in the square brackets forms a G.P.
⇒S=1000(1+x)1001x−(1+x)1001x2+(1+x)x2 Its clear from P(x), that the first two expansions can only have x50. So, coefficient of x50 in P(x)=(1000)1001C51−1001C52