wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the coefficient of x50 in (1+x)+2(1+x)2+3(1+x)3+....+1000(1+x)1000.

Open in App
Solution

Given P(x)=(1+x)+2(1+x)2+3(1+x)3+....+999(1+x)999+1000(1+x)1000

Let S=(1+x)+2(1+x)2+3(1+x)3+....+999(1+x)999+1000(1+x)1000 ....(1)

(1+x)S=(1+x)2+2(1+x)3+3(1+x)4+....+999(1+x)1000+1000(1+x)1001 ....(2)
Subtracting (1) from (2), we get
xS=1000(1+x)1001[(1+x)+(1+x)2+(1+x)3+....+(1+x)999+(1+x)1000]
Terms in the square brackets forms a G.P.
Using Sn=a(rn1)r1

xS=1000(1+x)1001[(1+x)(1+x)100011+x1]
xS=1000(1+x)1001[(1+x)1001(1+x)x]

S=1000(1+x)1001x(1+x)1001x2+(1+x)x2
Its clear from P(x), that the first two expansions can only have x50.
So, coefficient of x50 in P(x)=(1000)1001C511001C52

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
How to Expand?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon