Let S = (1+x)1000+2x(1+x)999+3x2(1+x)998+...+
1000x999(1+x)+1001x1000
Above is A.G.S. of common ratio r = x1+x
∴[x/(1+x)]S=x(1+x)999+2x2(1+x)998+
.....+1000⋅x1000+1001x10011+x
Subtracting,
(1−x1+x)S=(1+x)1000+x(1+x)999
+x2(1+x)998+....+x1000−1001x10011+x
or S = (1+x)1001+x(1+x)1000+x2(1+x)999+
......+x1000(1+x)−1001x1001
=(1+x)1001[1− (x(1+x))10001]1−x−1001x1001
Sum G.P.
(1+x)1002[1−(x/(1+x))1001]−1001x1001
=(1+x)1002−x1001(1+x)−1001x1001
=(1+x)1002−x1002−1002x1001 ....(1)
Now the coefficients of x50 on the R.H.S. of (1)
=1002C50