wiz-icon
MyQuestionIcon
MyQuestionIcon
9
You visited us 9 times! Enjoying our articles? Unlock Full Access!
Question

Find the coefficient of x50 in the expression
(1+x)1000+2x(1+x)999+3x2(1+x)998+1000x1000

Open in App
Solution

Let S = (1+x)1000+2x(1+x)999+3x2(1+x)998+...+
1000x999(1+x)+1001x1000
Above is A.G.S. of common ratio r = x1+x
[x/(1+x)]S=x(1+x)999+2x2(1+x)998+
.....+1000x1000+1001x10011+x
Subtracting,
(1x1+x)S=(1+x)1000+x(1+x)999
+x2(1+x)998+....+x10001001x10011+x
or S = (1+x)1001+x(1+x)1000+x2(1+x)999+
......+x1000(1+x)1001x1001
=(1+x)1001[1 (x(1+x))10001]1x1001x1001
Sum G.P.
(1+x)1002[1(x/(1+x))1001]1001x1001
=(1+x)1002x1001(1+x)1001x1001
=(1+x)1002x10021002x1001 ....(1)
Now the coefficients of x50 on the R.H.S. of (1)
=1002C50

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Visualising the Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon