Given expansion is
(1+x)1000+2x(1+x)999+3x2(1+x)998+3x3(1+x)997+....+1001x1000
Let S denotes the sum of the polynomial.
S=(1+x)1000+2x(1+x)999+3x2(1+x)998+3x3(1+x)997+....+1001x1000 .....(1)
Multiplying by
x1+x in eqn (1), we get
x(1+x)S=x(1+x)999+2x2(1+x)998+3x3(1+x)997+...+1000x1000+1001(1+x)x1001 ....(2)
Subtracting eqn(2) from eqn(1), we get
(1−x1+x)S=(1+x)1000+x(1+x)999+x2(1+x)998+x3(1+x)997+...+x1000−1001(1+x)x1001
⇒(11+x)S=(1+x)1000+x(1+x)999+x2(1+x)998+x3(1+x)997+....+x1000−1001(1+x)x1001
⇒S=[(1+x)1001+x(1+x)1000+x2(1+x)999+x3(1+x)998+....+x1000(1+x)]−1001x1001
The sequence in square bracket forms a G.P.
Here, first term a=(1+x)1001 and common ratio r=x1+x.
So, using the formula for sum of n terms of G.P. Sn=a(1−rn)1−r
⇒S=(1+x)1001[1−(x1+x)1001]1−x1+x−1001x1001
⇒S=(1+x)1001[1−(x1+x)1001]11+x−1001x1001
⇒S=(1+x)1002[1−(x1+x)1001]−1001x1001
⇒S=(1+x)1002−(1+x)x1001−1001x1001
⇒S=(1+x)1002−1002x1001−x1002
Since, the last two terms in the above sum cannot have x50 and only the first term can have x50
Now, the coefficient of xr in the expansion of (1+x)n is nCr
So, the coefficient of x50 in (1+x)1002 is 1002C50