wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the coefficient of x50 in the polynomials after parenthesis have been removed and like terms have been collected in the expansion
(1+x)1000+x(1+x)999+x2(1+x)998+....+x1000

Open in App
Solution

Given expansion is
(1+x)1000+2x(1+x)999+3x2(1+x)998+3x3(1+x)997+....+1001x1000

Let S denotes the sum of the polynomial.
S=(1+x)1000+2x(1+x)999+3x2(1+x)998+3x3(1+x)997+....+1001x1000 .....(1)
Multiplying by x1+x in eqn (1), we get

x(1+x)S=x(1+x)999+2x2(1+x)998+3x3(1+x)997+...+1000x1000+1001(1+x)x1001 ....(2)
Subtracting eqn(2) from eqn(1), we get
(1x1+x)S=(1+x)1000+x(1+x)999+x2(1+x)998+x3(1+x)997+...+x10001001(1+x)x1001
(11+x)S=(1+x)1000+x(1+x)999+x2(1+x)998+x3(1+x)997+....+x10001001(1+x)x1001
S=[(1+x)1001+x(1+x)1000+x2(1+x)999+x3(1+x)998+....+x1000(1+x)]1001x1001

The sequence in square bracket forms a G.P.
Here, first term a=(1+x)1001 and common ratio r=x1+x.

So, using the formula for sum of n terms of G.P. Sn=a(1rn)1r

S=(1+x)1001[1(x1+x)1001]1x1+x1001x1001
S=(1+x)1001[1(x1+x)1001]11+x1001x1001
S=(1+x)1002[1(x1+x)1001]1001x1001
S=(1+x)1002(1+x)x10011001x1001

S=(1+x)10021002x1001x1002
Since, the last two terms in the above sum cannot have x50 and only the first term can have x50
Now, the coefficient of xr in the expansion of (1+x)n is nCr
So, the coefficient of x50 in (1+x)1002 is 1002C50


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Binomial Coefficients
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon